
79JUNE 2010

SECURITY

Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE

Adding Attributes
to Role-Based
Access Control

R ole-based access con-
trol (D.F. Ferraiolo and
D.R. Kuhn, “Role-Based
Access Controls,” Proc.

15th Ann. Nat’l Computer Security
Conf., NSA/NIST, 1992, pp. 554-563;
R. Sandhu et al., “Role-Based Access
Control Models,” Computer, Feb.
1996, pp. 38-47), also known as
RBAC, provides a popular model
for information security that helps
reduce the complexity of security
administration and supports review
of permissions assigned to users.
This feature is critical to organiza-
tions that must determine their risk
exposure from employee IT system
access.

RBAC has frequently been criti-
cized for the difficulty of setting up
an initial role structure and for inflex-
ibility in rapidly changing domains.
A pure RBAC solution may provide
inadequate support for dynamic
attributes such as time of day, which
might need to be considered when
determining user permissions. To
support dynamic attributes, particu-
larly in large organizations, a “role

explosion” can result in thousands
of separate roles being fashioned for
different collections of permissions.
Recent interest in attribute-based
access control (ABAC) suggests that
attributes and rules could either
replace RBAC or make it more simple
and flexible.

ROLE-BASED
ACCESS CONTROL

A US standard defined in ANSI/
INCITS 359-2004, Information Tech-
nology—Role Based Access Control,
RBAC controls all access through
roles assigned to users. Each role
assigns a collection of permissions
to users. RBAC assumes that, in most
applications, permissions needed for
an organization’s roles change slowly
over time, but users may enter, leave,
and change roles rapidly.

For efficiency, roles can be struc-
tured hierarchically so that some
roles inherit permissions from others.
RBAC simplifies access control
compared with the administrative
burden that would be required for
a direct mapping from individual

users to access control lists attached
to resources. Once roles with their
permissions have been defined, user
provisioning simply requires that
office staff assign users to roles as
authorized by management.

RBAC is also well suited to sepa-
ration-of-duty requirements, where
no single individual has all permis-
sions needed for critical operations
such as expenditure of funds. Proper
operation of RBAC requires that
roles fall under a single adminis-
trative domain or have a consistent
definition across multiple domains,
so distributed applications might be
challenging.

Although RBAC implementa-
tions differ, many provide at least
basic features of the RBAC stan-
dard. Several proposals for revising
the standard have been introduced
(N. Li, J. Byun, and E. Bertino, “A
Critique of the ANSI Standard on
Role-Based Access Control,” IEEE
Security & Privacy, Nov. 2007, pp.
41-49) and evaluated with respect to
the rationale for design decisions in
the current standard (D.F. Ferraiolo,

 D. Richard Kuhn, National Institute of
 Standards and Technology

 Edward J. Coyne, Science Applications
 International Corporation

 Timothy R. Weil, Raytheon Polar
 Services Company

Merging the best features of RBAC and attribute-based systems
can provide effective access control for distributed and rapidly
changing applications.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on June 15,2010 at 17:31:26 UTC from IEEE Xplore. Restrictions apply.

COMPUTER 80

SECURITY

COMBINING RBAC AND ABAC
RBAC and ABAC have their partic-

ular advantages and disadvantages.
While ABAC may require up to 2n
rules for n attributes, attempting
to implement the same controls in
RBAC could, in a worst case, require
2n roles, one for each possible com-
bination of attributes. Generally
speaking, RBAC trades up-front role
structuring effort for ease of admin-
istration and user permission review,
while ABAC makes the reverse trade-
off: it is easy to set up, but analyzing
or changing user permissions can be
problematic.

Determining RBAC role structure,
a process known as role engineering
(E.J. Coyne, Role Engineering, Artech
House, 2008), could take many
months, but once completed it is easy
to determine who has what permis-
sions. ABAC makes it easy to specify
access rules, but to determine the
permissions available to a particular
user a potentially large set of rules
might need to be executed in exactly
the same order in which the system
applies them. This can make it impos-
sible to determine risk exposure for a
given employee position.

Can these two models be com-
bined to take advantage of both their
strengths?

Table 1 summarizes possible
combination strategies and options
for integrating attributes with RBAC

(RBAC-A). Options 0 and 2 are unde-
fined but included for completeness;
options 1 and 3, which have no user ID
in the access decision, might appear
unusual but could be used in public
facilities where attributes or roles
determine anonymous users’ access.

Broadly speaking, there are
three RBAC-A approaches to handle
the relationship between roles and
attributes, all retaining some of the
administrative and user permis-
sion review advantages of RBAC
while allowing the access control
system to work in a rapidly changing
environment:

•	 Dynamic roles. Attributes such
as time of day are used by a
front-end module to determine
the subject’s role, retaining a
conventional role structure
but changing role sets dynami-
cally (R. Fernandez, Enterprise
Dynamic Access Control Version
2 Overview, US Space and Naval
Warfare Systems Center, 1 Jan.
2006; http://csrc.nist.gov/rbac/
EDACv2overview.pdf). Some
implementations of dynamic
roles might let the user’s role be
fully determined by the front-
end attribute engine, while
others might use the front end
only to select from among a pre-
determined set of authorized
roles.

D.R. Kuhn, and R. Sandhu, “RBAC
Standard Rationale: Comments on
a Critique of the ANSI Standard on
Role-Based Access Control,” IEEE
Security & Privacy, Nov. 2007, pp.
51-53).

Committee CS1.1 within the Inter-
National Committee for Information
Technology Standards (INCITS) has
initiated a revision with the goal of
extending its usefulness to more
domains, particularly distributed
applications.

ATTRIBUTE-BASED
ACCESS CONTROL

Although ABAC has no clear con-
sensus model to date, the approach’s
central idea asserts that access can
be determined based on various
attributes presented by a subject
(A.H. Karp, H. Haury, and M.H. Davis,
“From ABAC to ZBAC: the Evolution
of Access Control Models,” tech.
report HPL-2009-30, HP Labs, 21
Feb. 2009). Rules specify conditions
under which access is granted or
denied. For example, a bank might
allow access if the subject is a teller
working between the hours of 7:30
am and 5:00 pm, or the subject is a
supervisor or auditor working those
same hours who also has manage-
ment authorization.

This approach might be more
flexible than RBAC because it does
not require separate roles for rel-
evant sets of subject attributes, and
rules can be implemented quickly
to accommodate changing needs.
The trade-off for this flexibility is
the complexity of cases that must
be considered: for n Boolean attri-
butes or conditions using attributes,
there are 2n possible combinations.
Authentication of attributes could
be distributed and based on the
authority that issues a particular
attribute, such as a firm vouching
for a subject’s employment status.
Negotiation between parties must
establish trust in attributes and
ensure that parties use the same
definition for attributes.

Table 1. Combination strategies and options for integrating attributes with RBAC.

Option U R A Model Permission mapping

0 0 0 0 undefined —

1 0 0 1 ABAC-basic A1, ... , An → perm

2 0 1 0 undefined —

3 0 1 1 ABAC-RBAC hybrid R, A1, ... , An → perm

4 1 0 0 ACLs U → perm

5 1 0 1 ABAC-ID U, A1, ... , An → perm

6 1 1 0 RBAC-basic U → R → perm

7 1 1 1 RBAC-A, dynamic roles U, A1, ... , An → R → perm

8 1 1 1 RBAC-A, attribute-centric U, R, A1, ... , An → perm

9 1 1 1 RBAC-A, role-centric U, R, A1, ... , An → perm

* U = user/subject ID; R = role; A = attributes

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on June 15,2010 at 17:31:26 UTC from IEEE Xplore. Restrictions apply.

81JUNE 2010

We believe this is an appro-
priate trade-off that
will retain the benefits

of RBAC while extending its util-
ity to today’s important distributed
applications.

In response to comments received
over the five-year life of the cur-
rent RBAC standard, INCITS CS1.1
is developing a policy-enhanced
RBAC standard to accommodate
importation of arbitrary constraints,
including attributes of all types. This
enhanced model will maintain the
advantages of RBAC while providing
a mechanism for including attributes
in access-control decisions. For more
information, see http://csrc.nist.
gov/groups/SNS/rbac/rbac-standard-
revision.html.

D. Richard Kuhn is a computer sci-
entist at the National Institute of
Standards and Technology. Contact
him at kuhn@nist.gov.

Edward J. Coyne is a senior security
engineer at Science Applications Inter-
national Corporation. Contact him at
ed.coyne@va.gov.

Timothy R. Weil is an information
security manager at Raytheon Polar
Services Company. Contact him at
timothy.weil.contractor@usap.gov.

where P is the set of permissions
assigned to the subject’s active
roles and R is the set of permissions
specified by the applicable ABAC
rules. The user’s role set therefore
determines the maximum set of
available permissions, support-
ing the principle of least privilege
and allowing easy review of user
permissions.

Combined design
We use a combined design rather

than a pure system because, in
general, some user attributes are
relatively static—such as position,
skill set, or office location—while
others, such as time of day, are
dynamic. Developing a role struc-
ture based on the more static
at tr ibutes can avoid awkward
designs that might result from
purely one choice or another.

For example, consider a system
with 10 attributes, four of which
are static and six dynamic. This set
of attributes could result in 210 roles
or 210 ABAC rules. Establishing a role
structure based on the four static
and six dynamic attributes means a
maximum of 16 roles and 64 rules,
a significant improvement over the
1,024 roles or rules that could be
considered using only RBAC or only
ABAC.

Determining
maximum permissions

Applying the role-engineering
effort to the relatively static attri-
butes, and encapsulating these
components of access decisions
in roles, can reduce the number of
dynamic rules dramatically. A com-
bined design thus retains advantages
of RBAC, such as ease of user pro-
visioning and the ability to quickly
determine the maximum permis-
sions available to each user—critical
in determining risk exposure while
preventing a “role explosion” to cover
every possible contingency for per-
mission sets that might be required
by users.

•	 Attribute-centric. A role name
is just one of many attributes.
In contrast with conventional
RBAC, the role is not a collection
of permissions but the name of
an attribute called “role.” This
approach’s main drawback is the
rapid loss of RBAC’s administra-
tive simplicity as more attributes
are added. It also suffers from
potential problems with ABAC
when determining the risk expo-
sure of a particular employee
position.

•	 Role-centric. Attributes are added
to constrain RBAC. Constraint
rules that incorporate attributes
can only reduce permissions
available to the user, not expand
them. Some of ABAC’s flexibil-
ity is lost because permission
sets are still constrained by
role, but the system retains the
RBAC capability to determine the
maximum set of user-obtainable
permissions. As an aside, devel-
opers explicitly designed the
formal model for RBAC, intro-
duced in 1992, to accommodate
additional constraints being
placed on a role.

The dynamic-roles RBAC-A model
allows implementation as a layer atop
an existing RBAC structure. Attribute-
centric RBAC-A, as defined here,
is less a true RBAC system because
access is not controlled by roles
formed from sets of permissions.

PERMISSION CONSTRAINTS
Implementing the role-centric

RBAC-A scheme requires changing
the RBAC standard to constrain the
set of permissions available during
a user’s session. In the current stan-
dard, permissions are available
depending on the user’s active roles.
Clearly, the subject must avoid receiv-
ing any permission not authorized
for the active role or restricted by the
attribute-based constraints.

The permissions in this approach
will be the intersection of P and R,

Editor: Jeffrey Voas, National Institute
of Standards and Technology;
j.voas@ieee.org

Disclaimer
Certain software products are
identified in this document,
but such identification does
not imply recommendation
by the US National Institute of
Standards and Technology or
other agencies of the US govern-
ment, nor does it imply that the
products identified are neces-
sarily the best available for the
purpose.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on June 15,2010 at 17:31:26 UTC from IEEE Xplore. Restrictions apply.

